The ribosomal l1 protuberance in yeast is methylated on a lysine residue catalyzed by a seven-beta-strand methyltransferase.

نویسندگان

  • Kristofor J Webb
  • Qais Al-Hadid
  • Cecilia I Zurita-Lopez
  • Brian D Young
  • Rebecca S Lipson
  • Steven G Clarke
چکیده

Modification of proteins of the translational apparatus is common in many organisms. In the yeast Saccharomyces cerevisiae, we provide evidence for the methylation of Rpl1ab, a well conserved protein forming the ribosomal L1 protuberance of the large subunit that functions in the release of tRNA from the exit site. We show that the intact mass of Rpl1ab is 14 Da larger than its calculated mass with the previously described loss of the initiator methionine residue and N-terminal acetylation. We determined that the increase in mass of yeast Rpl1ab is consistent with the addition of a methyl group to lysine 46 using top-down mass spectrometry. Lysine modification was confirmed by detecting (3)H-N-ε-monomethyllysine in hydrolysates of Rpl1ab purified from yeast cells radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. Mass spectrometric analysis of intact Rpl1ab purified from 37 deletion strains of known and putative yeast methyltransferases revealed that only the deletion of the YLR137W gene, encoding a seven-β-strand methyltransferase, results in the loss of the +14-Da modification. We expressed the YLR137W gene as a His-tagged protein in Escherichia coli and showed that it catalyzes N-ε-monomethyllysine formation within Rpl1ab on ribosomes from the ΔYLR137W mutant strain lacking the methyltransferase activity but not from wild-type ribosomes. We also showed that the His-tagged protein could catalyze monomethyllysine formation on a 16-residue peptide corresponding to residues 38-53 of Rpl1ab. We propose that the YLR137W gene be given the standard name RKM5 (ribosomal lysine (K) methyltransferase 5). Orthologs of RKM5 are found only in fungal species, suggesting a role unique to their survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase.

We have shown that Rpl3, a protein of the large ribosomal subunit from baker's yeast (Saccharomyces cerevisiae), is stoichiometrically monomethylated at position 243, producing a 3-methylhistidine residue. This conclusion is supported by top-down and bottom-up mass spectrometry of Rpl3, as well as by biochemical analysis of Rpl3 radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. Th...

متن کامل

Identification of protein N-terminal methyltransferases in yeast and humans.

Protein modification by methylation is important in cellular function. We show here that the Saccharomyces cerevisiae YBR261C/TAE1 gene encodes an N-terminal protein methyltransferase catalyzing the modification of two ribosomal protein substrates, Rpl12ab and Rps25a/Rps25b. The YBR261C/Tae1 protein is conserved across eukaryotes; all of these proteins share sequence similarity with known seven...

متن کامل

Histidine methylation of yeast ribosomal protein Rpl3p is required for proper 60S subunit assembly.

Histidine protein methylation is an unusual posttranslational modification. In the yeast Saccharomyces cerevisiae, the large ribosomal subunit protein Rpl3p is methylated at histidine 243, a residue that contacts the 25S rRNA near the P site. Rpl3p methylation is dependent upon the presence of Hpm1p, a candidate seven-beta-strand methyltransferase. In this study, we elucidated the biological ac...

متن کامل

Methylation of H3-Lysine 79 Is Mediated by a New Family of HMTases without a SET Domain

The N-terminal tails of core histones are subjected to multiple covalent modifications, including acetylation, methylation, and phosphorylation. Similar to acetylation, histone methylation has emerged as an important player in regulating chromatin dynamics and gene activity. Histone methylation occurs on arginine and lysine residues and is catalyzed by two families of proteins, the protein argi...

متن کامل

Selenium-Based S-Adenosylmethionine Analog Reveals the Mammalian Seven-Beta-Strand Methyltransferase METTL10 to Be an EF1A1 Lysine Methyltransferase

Lysine methylation has been extensively studied in histones, where it has been shown to provide specific epigenetic marks for the regulation of gene expression; however, the molecular mechanism and physiological function of lysine methylation in proteins other than histones remains to be fully addressed. To better understand the substrate diversity of lysine methylation, S-adenosylmethionine (S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 21  شماره 

صفحات  -

تاریخ انتشار 2011